JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Neurons Derived from Induced Pluripotent Stem Cells of Patients with Down Syndrome Reproduce Early Stages of Alzheimer's Disease Type Pathology in vitro.

People with Down syndrome (DS) are at high risk of developing pathology similar to Alzheimer's disease (AD). Modeling of this pathology in vitro may be useful for studying this phenomenon. In this study, we analyzed three different cultures of neural cells carrying trisomy of chromosome 21, which were generated by directed differentiation from induced pluripotent stem cells (iPS cells). We report here that in vitro generated DS neural cells have abnormal metabolism of amyloid-β (Aβ) manifested by increased secretion and accumulation of Aβ granules of Aβ42 pathological isoform with upregulated expression of the APP gene. Additionally, we found increased expression levels of genes that are considered to be associated with AD (BACE2, RCAN1, ETS2, TMED10), as compared to healthy controls. Thus, the neural cells generated from induced pluripotent stem cells with DS reproduce initial cellular signs of AD-type pathology and can be useful tools for modeling and studying this variant of AD in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app