Add like
Add dislike
Add to saved papers

Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm<sup>3+</sup>-doped fiber lasers.

Optics Express 2016 December 27
With increasing demand on a laser source in the gigahertz pulse repetition rate regime, clarification on the mechanism of instability in high repetition rate fiber lasers - a promising alternative to solid state lasers - is of great importance and can potentially offer guideline for continuous wave (CW) mode locking. Here we present a theoretical approach together with relevant experimental corroboration to analyze the instabilities. By means of appropriate approximations, regimes from Q-switched mode locking, CW mode locking and pulsation are theoretically identified. Meanwhile, a critical curve that characterizes pump level for triggering Q-switched mode locking and pulsation for different repetition rates is given by virtue of both analytical and numerical procedures. In experiment, a passively mode-locked fiber laser with 1.6 GHz fundamental repetition rate is realized. The three regimes and corresponding pump power intervals are revealed, which are in consistence with theoretical prediction. Pulsation, as a relatively exotic phenomenon in GHz fiber laser, is well reproduced by the present model, which further verifies the accuracy of the approach as well as enriches the nonlinear dynamics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app