Add like
Add dislike
Add to saved papers

Absolute distance measurement system with micron-grade measurement uncertainty and 24 m range using frequency scanning interferometry with compensation of environmental vibration.

Optics Express 2016 December 27
We establish a theoretical model of the Doppler effect in absolute distance measurements using frequency scanning interferometry (FSI) and propose a novel FSI absolute distance measurement system. This system incorporates a basic FSI system and a laser Doppler velocimeter (LDV). The LDV results are used to correct for the Doppler effect in the absolute distance measurement signal obtained by the basic FSI system. In the measurement of a target located at 16 m, a measurement resolution of 65.5 μm is obtained, which is close to the theoretical resolution, and a standard deviation of 3.15 μm is obtained. The theoretical measurement uncertainty is 8.6 μm + 0.16 μm/m Rm (k = 2) within a distance range of 1 m to 24 m neglecting the influence of air refractive index, which has been verified with experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app