Add like
Add dislike
Add to saved papers

Experimental study of wideband in-band full-duplex communication based on optical self-interference cancellation.

Optics Express 2016 December 27
In this paper, we experimentally demonstrate and study a wideband in-band full-duplex (IBFD) wireless communication system based on optical self-interference cancellation (SIC). The optical SIC performances based on antennas for broadband IBFD are firstly evaluated within high frequency bands (> 10GHz). In this system, two electro-absorption-modulated lasers (EMLs) and a balanced photo-detector (BPD) are employed to remove the wideband self-interference within received wireless signal. By theoretical derivation and experimental verification, the impact factors of SIC are analyzed, especially for non-flatness wireless channel case. Experimental results show more than 30-dB cancellation depth in 100-MHz bandwidth with employment of horn antennas. Besides, IBFD transmission performance based on OFDM signals for different bandwidth with 11.15-GHz center frequency is also demonstrated, and ~52.2- dB•Hz<sup>2/3</sup> spurious-free dynamic range (SFDR) is obtained.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app