Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The Role of Autophagy in the Correlation Between Neuron Damage and Cognitive Impairment in Rat Chronic Cerebral Hypoperfusion.

Pathological changes and cognitive impairment caused by chronic cerebral hypoperfusion (CCH) have been previously reported. However, how these changes progress remains unclear. Additionally, there are few studies regarding the mechanism underlying the involvement of autophagy in these processes. Two-step bilateral common carotid artery occlusion (BCCAO) was performed to replicate CCH in Sprague Dawley rats. The animals were divided into seven groups, including a sham group and 2-, 4-, 8-, 12-, 16-, and 20-week BCCAO groups (n = 7 per group). Five additional rats were used to monitor cerebral blood fluid (CBF) changes via laser speckle contrast imaging (LSCI). We tested for cognitive changes and pathological changes, including neuronal injury, white matter lesions, and β-Amyloid (Aβ) deposition, via acknowledged methods. Autophagy was analyzed via western blotting and immunohistochemistry. Cognitive impairment appeared beginning at 8 weeks after BCCAO despite improvement in CBF. Neuronal damage began at 8 weeks in the hippocampal CA1 region and at 4 weeks in the cortex. White matter injury was detected in all BCCAO groups. Intracellular Aβ accumulation occurred earlier than extracellular plaque formation. The levels of autophagy-related proteins (Beclin-1, light chain 3B, and P62) increased beginning at 2 weeks in the cortex and at 4 weeks in the hippocampus and remained elevated throughout the remainder of the study period. Despite recovery of CBF, autophagy dysfunction occurred early after CCH and played an important role in neuronal deterioration, cognitive decline, and intracellular Aβ aggregation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app