JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Genetic manipulation of specific neural circuits by use of a viral vector system.

To understand the mechanisms underlying higher brain functions, we need to analyze the roles of specific neuronal pathways or cell types forming the complex neural networks. In the neuroscience field, the transgenic approach has provided a useful gene engineering tool for experimental studies of neural functions. The conventional transgenic technique requires the appropriate promoter regions that drive a neuronal type-specific gene expression, but the promoter sequences specifically functioning in each neuronal type are limited. Previously, we developed novel types of lentiviral vectors showing high efficiency of retrograde gene transfer in the central nervous system, termed highly efficient retrograde gene transfer (HiRet) vector and neuron-specific retrograde gene transfer (NeuRet) vector. The HiRet and NeuRet vectors enable genetical manipulation of specific neural pathways in diverse model animals in combination with conditional cell targeting, synaptic transmission silencing, and gene expression systems. These newly developed vectors provide powerful experimental strategies to investigate, more precisely, the machineries exerting various neural functions. In this review, we give an outline of the HiRet and NeuRet vectors and describe recent representative applications of these viral vectors for studies on neural circuits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app