Journal Article
Review
Add like
Add dislike
Add to saved papers

Pleiotropic Effects of Statins on the Cardiovascular System.

Circulation Research 2017 January 7
The statins have been used for 30 years to prevent coronary artery disease and stroke. Their primary mechanism of action is the lowering of serum cholesterol through inhibiting hepatic cholesterol biosynthesis thereby upregulating the hepatic low-density lipoprotein (LDL) receptors and increasing the clearance of LDL-cholesterol. Statins may exert cardiovascular protective effects that are independent of LDL-cholesterol lowering called pleiotropic effects. Because statins inhibit the production of isoprenoid intermediates in the cholesterol biosynthetic pathway, the post-translational prenylation of small GTP-binding proteins such as Rho and Rac, and their downstream effectors such as Rho kinase and nicotinamide adenine dinucleotide phosphate oxidases are also inhibited. In cell culture and animal studies, these effects alter the expression of endothelial nitric oxide synthase, the stability of atherosclerotic plaques, the production of proinflammatory cytokines and reactive oxygen species, the reactivity of platelets, and the development of cardiac hypertrophy and fibrosis. The relative contributions of statin pleiotropy to clinical outcomes, however, remain a matter of debate and are hard to quantify because the degree of isoprenoid inhibition by statins correlates to some extent with the amount of LDL-cholesterol reduction. This review examines some of the currently proposed molecular mechanisms for statin pleiotropy and discusses whether they could have any clinical relevance in cardiovascular disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app