Add like
Add dislike
Add to saved papers

Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus.

The cell nucleus must continually resist and respond to intercellular and intracellular mechanical forces to transduce mechanical signals and maintain proper genome organization and expression. Altered nuclear mechanics is associated with many human diseases, including heart disease, progeria, and cancer. Chromatin and nuclear envelope A-type lamin proteins are known to be key nuclear mechanical components perturbed in these diseases, but their distinct mechanical contributions are not known. Here we directly establish the separate roles of chromatin and lamin A/C and show that they determine two distinct mechanical regimes via micromanipulation of single isolated nuclei. Chromatin governs response to small extensions (<3 μm), and euchromatin/heterochromatin levels modulate the stiffness. In contrast, lamin A/C levels control nuclear strain stiffening at large extensions. These results can be understood through simulations of a polymeric shell and cross-linked polymer interior. Our results provide a framework for understanding the differential effects of chromatin and lamin A/C in cell nuclear mechanics and their alterations in disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app