Add like
Add dislike
Add to saved papers

Temperature-dependent sRNA transcriptome of the Lyme disease spirochete.

BMC Genomics 2017 January 6
BACKGROUND: Transmission of Borrelia burgdorferi from its tick vector to a vertebrate host requires extensive reprogramming of gene expression. Small regulatory RNAs (sRNA) have emerged in the last decade as important regulators of bacterial gene expression. Despite the widespread observation of sRNA-mediated gene regulation, only one sRNA has been characterized in the Lyme disease spirochete B. burgdorferi. We employed an sRNA-specific deep-sequencing approach to identify the small RNA transcriptome of B. burgdorferi at both 23 °C and 37 °C, which mimics in vitro the transmission from the tick vector to the mammalian host.

RESULTS: We identified over 1000 sRNAs in B. burgdorferi revealing large amounts of antisense and intragenic sRNAs, as well as characteristic intergenic and 5' UTR-associated sRNAs. A large fraction of the novel sRNAs (43%) are temperature-dependent and differentially expressed at the two temperatures, suggesting a role in gene regulation for adaptation during transmission. In addition, many genes important for maintenance of Borrelia during its enzootic cycle are associated with antisense RNAs or 5' UTR sRNAs. RNA-seq data were validated for twenty-two of the sRNAs via Northern blot analyses.

CONCLUSIONS: Our study demonstrates that sRNAs are abundant and differentially expressed by environmental conditions suggesting that gene regulation via sRNAs is a common mechanism utilized in B. burgdorferi. In addition, the identification of antisense and intragenic sRNAs impacts the broadly used loss-of-function genetic approach used to study gene function and increases the coding potential of a small genome. To facilitate access to the analyzed RNA-seq data we have set-up a website at https://www.cibiv.at/~niko/bbdb/ that includes a UCSC browser track hub. By clicking on the respective link, researchers can interactively inspect the data in the UCSC genome browser (Kent et al., Genome Res 12:996-1006, 2002).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app