Add like
Add dislike
Add to saved papers

Insights into the interaction of high potency inhibitor IRC-083864 with phosphatase CDC25.

Proteins 2017 April
CDC25 phosphatases play a crucial role in cell cycle regulation. They have been found to be over-expressed in various human tumours and to be valuable targets for cancer treatment. Here, we report the first model of binding of the most potent CDC25 inhibitor to date, the bis-quinone IRC-083864, into CDC25B obtained by combining molecular modeling and NMR studies. Our study provides new insights into key interactions of the catalytic site inhibitor and CDC25B in the absence of any available experimental structure of CDC25 with a bound catalytic site inhibitor. The docking model reveals that IRC-083864 occupies both the active site and the inhibitor binding pocket of the CDC25B catalytic domain. NMR saturation transfer difference and WaterLOGSY data indicate the binding zones of the inhibitor and support the docking model. Probing interactions of analogues of the two quinone units of IRC-083864 with CDC25B demonstrate that IRC-083864 competes with each monomer. Proteins 2017; 85:593-601. © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app