Add like
Add dislike
Add to saved papers

Effect of the Level of Anesthesia on the Auditory Brainstem Response in the Emei Music Frog (Babina daunchina).

Anesthesia is known to affect the auditory brainstem response (ABR) in mice, rats, birds and lizards. The present study investigated how the level of anesthesia affects ABR recordings in an amphibian species, Babina daunchina. To do this, we compared ABRs evoked by tone pip stimuli recorded from 35 frogs when Tricaine methane sulphonate (MS-222) anesthetic immersion times varied from 0, 5 and 10 minutes after anesthesia induction at sound frequencies between 0.5 and 6 kHz. ABR thresholds increased significantly with immersion time across the 0.5 kHz to 2.5 kHz frequency range, which is the most sensitive frequency range for hearing and the main frequency range of male calls. There were no significant differences for anesthetic levels across the 3 kHz to 6 kHz range. ABR latency was significantly longer in the 10 min group than in the 0 and 5 min groups at frequencies of 0.5, 1.0, 1.5, 2.5 kHz, while ABR latency did not differ across the 3 kHz to 4 kHz range and at 2.0 kHz. Taken together, these results show that the level of anesthesia affects the amplitude, threshold and latency of ABRs in frogs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app