Add like
Add dislike
Add to saved papers

Global Asymptotic Stability and Stabilization of Neural Networks With General Noise.

Neural networks (NNs) in the stochastic environment were widely modeled as stochastic differential equations, which were driven by white noise, such as Brown or Wiener process in the existing papers. However, they are not necessarily the best models to describe dynamic characters of NNs disturbed by nonwhite noise in some specific situations. In this paper, general noise disturbance, which may be nonwhite, is introduced to NNs. Since NNs with nonwhite noise cannot be described by Itô integral equation, a novel modeling method of stochastic NNs is utilized. By a framework in light of random field approach and Lyapunov theory, the global asymptotic stability and stabilization in probability or in the mean square of NNs with general noise are analyzed, respectively. Criteria for the concerned systems based on linear matrix inequality are proposed. Some examples are given to illustrate the effectiveness of the obtained results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app