JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

AIF-independent parthanatos in the pathogenesis of dry age-related macular degeneration.

Cell Death & Disease 2017 January 6
Cell death of retinal pigment epithelium (RPE) is characterized as an essential late-stage phenomenon of dry age-related macular degeneration (AMD). The aim of this study was to elucidate the molecular mechanism underlying RPE cell death after exposure to oxidative stress, which occurs often because of the anatomical location of RPE cells. ARPE-19, an established RPE cell line, exhibited necrotic features involving poly (ADP-ribose) polymerase-1 (PARP-1) activation in response to hydrogen peroxide (H2 O2 ). ARPE-19 cells were resistant to H2 O2 when PARP-1 was depleted using siRNA or inhibited by a pharmacological inhibitor of PARP-1, olaparib. Our data suggest a causal relationship between PARP-1 activation and ARPE-19 cell death in response to H2 O2 . Next, we investigated downstream molecular events in PARP-1 activation. Increased mitochondrial depolarization, mitochondrial fission and alterations of the cellular energy dynamics with reduced NAD+ and ATP were observed in H2 O2 -treated ARPE-19 cells. H2 O2 -triggered mitochondrial dysfunction was inhibited by olaparib. Nevertheless, translocation of apoptosis-inducing factor (AIF), a biochemical signature for PARP-1-dependent cell death (parthanatos), was not observed in our study. Moreover, the depletion of AIF did not affect the amplitude of cell death, demonstrating the lack of a role for AIF in the death of ARPE-19 cells in response to H2 O2 . This feature distinguishes the type of death observed in this study from canonical parthanatos. Next, we examined the in vivo role of PARP-1 in a dry AMD animal model system. Histological analysis of the outer nuclear layer in the mouse retina revealed protection against sodium iodate (SI) following treatment with olaparib. Moreover, retina fundus and electroretinograms also confirmed such a protective effect in the SI-treated rabbit. Collectively, we report that AIF-independent PARP-1-dependent necrosis constitutes a major mechanism of RPE cell death leading to retinal degeneration in dry AMD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app