Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Synergism between soluble guanylate cyclase signaling and neuropeptides extends lifespan in the nematode Caenorhabditis elegans.

Aging Cell 2017 April
Oxygen (O2 ) homeostasis is important for all aerobic animals. However, the manner by which O2 sensing and homeostasis contribute to lifespan regulation is poorly understood. Here, we use the nematode Caenorhabditis elegans to address this question. We demonstrate that a loss-of-function mutation in the neuropeptide receptor gene npr-1 and a deletion mutation in the atypical soluble guanylate cyclase gcy-35 O2 sensor interact synergistically to extend worm lifespan. The function of npr-1 and gcy-35 in the O2 -sensing neurons AQR, PQR, and URX shortens the lifespan of the worm. By contrast, the activity of the atypical soluble guanylate cyclase O2 sensor gcy-33 in these neurons is crucial for lifespan extension. In addition to AQR, PQR, and URX, we show that the O2 -sensing neuron BAG and the interneuron RIA are also important for the lifespan lengthening. Neuropeptide processing by the proprotein convertase EGL-3 is essential for lifespan extension, suggesting that the synergistic effect of joint loss of function of gcy-35 and npr-1 is mediated through neuropeptide signal transduction. The extended lifespan is regulated by hypoxia and insulin signaling pathways, mediated by the transcription factors HIF-1 and DAF-16. Moreover, reactive oxygen species (ROS) appear to play an important function in lifespan lengthening. As HIF-1 and DAF-16 activities are modulated by ROS, we speculate that joint loss of function of gcy-35 and npr-1 extends lifespan through ROS signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app