JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cancer cachexia differentially regulates visceral adipose tissue turnover.

Cancer cachexia (CC) is a progressive metabolic syndrome that is marked by severe body weight loss. Metabolic disarrangement of fat tissues is a very early event in CC, followed by adipose tissue (AT) atrophy and remodelling. However, there is little information regarding the possible involvement of cellular turnover in this process. Thus, in this study, we evaluated the effect of CC on AT turnover and fibrosis of mesenteric (MEAT) and retroperitoneal (RPAT) adipose tissue depots as possible factors that contribute to AT atrophy. CC was induced by a subcutaneous injection of Walker tumour cells (2 × 107 ) in Wistar rats, and control animals received only saline. The experimental rats were randomly divided into four experimental groups: 0 days, 4 days, 7 days and 14 days after injection. AT turnover was analysed according to the Pref1/Adiponectin ratio of gene expression from the stromal vascular fraction and pro-apoptotic CASPASE3 and CASPASE9 from MEAT and RPAT. Fibrosis was verified according to the total collagen levels and expression of extracellular matrix genes. AT turnover was verified by measurements of lipolytic protein expression. We found that the Pref1/Adiponectin ratio was decreased in RPAT (81.85%, P < 0.05) with no changes in MEAT compared with the respective controls. CASPASE3 and CASPASE9 were activated on day 14 only in RPAT. Collagen was increased on day 7 in RPAT (127%) and MEAT (4.3-fold). The Collagen1A1, Collagen3A1, Mmp2 and Mmp9 mRNA levels were upregulated only in MEAT in CC. Lipid turnover was verified in RPAT and was not modified in CC. We concluded that the results suggest that CC affects RPAT cellular turnover, which may be determinant for RPAT atrophy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app