Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Self-Assembly of Human Profilin-1 Detected by Carr-Purcell-Meiboom-Gill Nuclear Magnetic Resonance (CPMG NMR) Spectroscopy.

Biochemistry 2017 Februrary 8
Protein oligomerization in the cell has important implications for both health and disease, and an understanding of the mechanisms by which proteins can self-associate is, therefore, of critical interest. Initial stages of the oligomerization process can be hard to detect, as they often involve the formation of sparsely populated and transient states that are difficult to characterize by standard biophysical approaches. Using relaxation dispersion nuclear magnetic resonance spectroscopy, we study the oligomerization of human profilin-1, a protein that regulates the polymerization of actin. We show that in solution and at millimolar concentrations profilin-1 is predominantly monomeric. However, fits of concentration-dependent relaxation data are consistent with the formation of a higher-order oligomer that is generated via a multistep process. Together with crystallographic data for profilin-2, a homologue of the protein studied here, our results suggest that profilin-1 forms a sparsely populated tetrameric conformer in solution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app