JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

An In-Depth Structural Study of the Carbon Dioxide Adsorption Process in the Porous Metal-Organic Frameworks CPO-27-M.

ChemSusChem 2017 April 23
The CO2 adsorption process in the family of porous metal-organic framework materials CPO-27-M (M=Mg, Mn, Co, Ni, Cu, and Zn) was studied by variable-temperature powder synchrotron X-ray diffraction under isobaric conditions. The Rietveld analysis of the data provided a time-lapse view of the adsorption process on CPO-27-M. The results confirm the temperature-dependent order of occupation of the three adsorption sites in the pores of the CPO-27-M materials. In CPO-27-M (M=Mg, Mn, Co, Ni, and Zn), the adsorption sites are occupied in sequential order, primarily because of the high affinity of CO2 for the open metal sites. CPO-27-Cu deviates from this stepwise mechanism, and the adsorption sites at the metal cation and the second site are occupied in parallel. The temperature dependence of the site occupancy of the individual CO2 adsorption sites derived from the diffraction data is reflected in the shape of the volumetric sorption isotherms. The fast kinetics and high reversibility observed in these experiments support the suitability of these materials for use in temperature- or pressure-swing processes for carbon capture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app