Add like
Add dislike
Add to saved papers

What a Difference a Methyl Group Makes: The Selectivity of Monoamine Oxidase B Towards Histamine and N-Methylhistamine.

Monoamine oxidase (MAO) enzymes catalyze the degradation of a very broad range of biogenic and dietary amines including many neurotransmitters in the brain, whose imbalance is extensively linked with the biochemical pathology of various neurological disorders. Although sharing around 70 % sequence identity, both MAO A and B isoforms differ in substrate affinities and inhibitor sensitivities. Inhibitors that act on MAO A are used to treat depression, due to their ability to raise serotonin concentrations, whereas MAO B inhibitors decrease dopamine degradation and improve motor control in patients with Parkinson disease. Despite this functional importance, the factors affecting MAO selectivity are poorly understood. Here, we used a combination of molecular dynamics (MD) simulations, molecular mechanics with Poisson-Boltzmann and surface area solvation (MM-PBSA) binding free energy evaluations, and quantum mechanical (QM) cluster calculations to address the unexpected, yet challenging MAO B selectivity for N-methylhistamine (NMH) over histamine (HIS), differing only in a single methyl group distant from the reactive ethylamino center. This study shows that a dominant selectivity contribution is offered by a lower activation free energy for NMH by 2.6 kcal mol-1 , in excellent agreement with the experimental ΔΔG≠ EXP =1.4 kcal mol-1 , together with a more favorable reaction exergonicity and active-site binding. This study also confirms the hydrophobic nature of the MAO B active site and underlines the important role of Ile199, Leu171, and Leu328 in properly orienting substrates for the reaction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app