Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Chemical Imaging of Xylem by Raman Microspectroscopy.

Raman microspectroscopic techniques provide highly detailed chemical information about xylem tissue at submicron spatial resolution. The techniques are generally sensitive and they provide a powerful, yet inexpensive way to probe the chemical composition of individual cells or cell wall layers in situ, non-destructively, in a confocal manner, simultaneously detecting all chemical compounds without the need of external agents (label, dyes, stains). Problems with limited specificity in complex chemical matrices such as cell walls may arise, compounded by fluorescence problems. However, these can often be circumvented. In this chapter, the basics of the technique, including a common instrumental setup, together with the general strengths and limitations of Raman microspectroscopy are discussed. Detailed protocols are provided for single point measurements, as well as for fully customizable raster scan mapping, including sample preparation, setup, and measurement steps. The major steps of the data analysis procedure are discussed as well.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app