Add like
Add dislike
Add to saved papers

Riluzole ameliorates learning and memory deficits in Aβ25-35-induced rat model of Alzheimer's disease and is independent of cholinoceptor activation.

Alzheimer's disease (AD) is a major global public health concern and social care problem that is associated with learning, memory, and cognitive deficits. Riluzole is a glutamate modulator which has shown to improve memory performance in aged rats and may be of benefit in Alzheimer's disease. In the present study, its beneficial effect on attenuation of learning and memory deficits in Aβ25-35-induced rat model of AD was assessed. Riluzole administration at a dose of 10mg/kg/day p.o. improved spatial memory in Morris water maze and retention and recall in passive avoidance task and its protective effect was not neutralized following intracerebroventricular microinjection of muscarinic or nicotinic receptor antagonists. Further biochemical analysis showed that riluzole pretreatment of intrahippocampal Aβ-microinjected rats is able to attenuate hippocampal AChE activity and lower some oxidative stress markers, i.e. MDA and nitrite, with no significant change of the defensive enzyme catalase. Furthermore, riluzole prevented hippocampal CA1 neuronal loss and reduced 3-nitrotyrosine immunoreactivity. It is concluded that riluzole could exert a protective effect against memory decline induced by intrahippocampal Aβ25-35 through anti-oxidative, anti-cholinesterase, and neuroprotective potential and its beneficial effect is possibly independent of cholinoceptor activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app