Add like
Add dislike
Add to saved papers

SU-G-TeP1-01: A Simulation Study to Investigate Maximum Allowable Deformations of Implant Geometry Before Plan Objectives Are Violated in Prostate HDR Brachytherapy.

Medical Physics 2016 June
PURPOSE: In prostate HDR brachytherapy dose distributions are highly sensitive to changes in prostate volume and catheter displacements. We investigate the maximum deformations in implant geometry before planning objectives are violated.

METHODS: A typical prostate Ir-192 HDR brachytherapy reference plan was calculated on the Oncentra planning system, which used CT images from a tissue equivalent prostate phantom (CIRS Model 053S) embedded inside a pelvis wax phantom. The prostate was deformed and catheters were displaced in simulations using a code written in MATLAB. For each deformation dose distributions were calculated, based on TG43 methods, using the MATLAB code. The calculations were validated through comparison with Oncentra calculations for the reference plan, and agreed within 0.12%SD and 0.3%SD for dose and volume, respectively. Isotropic prostate volume deformations of up to +34% to -27% relative to its original volume, and longitudinal catheter displacements of 7.5 mm in superior and inferior directions were simulated. Planning objectives were based on American Brachytherapy Society guidelines for prostate and urethra volumes. A plan violated the planning objectives when less than 90% of the prostate volume received the prescribed dose or higher (V100 ), or the urethral volume receiving 125% of prescribed dose or higher was more than 1 cc (U125 ). Lastly, the dose homogeneity index (DHI=1-V150 /V100 ) was evaluated; a plan was considered sub-optimal when the DHI fell below 0.62.

RESULTS AND CONCLUSION: Planning objectives were violated when the prostate expanded by 10.7±0.5% or contracted by 11.0±0.2%; objectives were also violated when catheters were displaced by 4.15±0.15 mm and 3.70±0.15 mm in the superior and inferior directions, respectively. The DHI changes did not affect the plan optimality, except in the case of prostate compression. In general, catheter displacements have a significantly larger impact on plan optimality than prostate volume changes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app