Add like
Add dislike
Add to saved papers

TU-H-CAMPUS-TeP1-04: Novel 3D Printed Plastic Cutouts Filled with Aluminum Oxide for Same Day Electron Radiotherapy.

Medical Physics 2016 June
PURPOSE: Clinics that outsource electron cutout manufacturing may be unable to simulate and treat patients on the same day. To enable same day treatment, we investigate the use of 3D printed hollow cutouts filled with 30 grit Al2 O3 powder. We verified the dosimetric equivalence of such a cutout relative to an outsourced Copper cutout.

METHODS: Printing was performed using a Ultibots Kossel 250 V-Slot 3D printer and polylactic acid filament. Printing files were derived from an in-house 3D model designed to mate with a Varian 6 cm electron cone. Relative to conventional cutouts (Copper or Cerrobend), the height of the hollow plastic cutout was extended by 1.0 cm to increase attenuation. Measurements were performed for 6 MeV in solid water at dmax (1.4 cm) with Gafchromic™ EBT3 film; the cutout was kidney-shaped with a long and short axis of approximately 5 and 2 cm, respectively. The Copper cutout was based on an outline of the 3D printed cutout.A calibration film was exposed immediately after the electron irradiations. All films, including an un-irradiated one, were from the same batch. Films were scanned on an Epson 10000XL flatbed scanner. Film analysis was performed in DoseLab (MOBIUS Medical Systems, Houston, Tx).

RESULTS: Visual comparison of the physical cutouts revealed that the Copper cutout had a slightly smaller opening than the printed cutout. Line profiles through the registered films indicated agreement within 5% in the open section. 99.9% of pixels passed gamma analysis with 2% local percent difference, 2 mm DTA, and a 25% threshold.

CONCLUSION: Same day simulation and treatment with electrons is feasible with 3D printing of a hollow cutout filled with Al2 O3 . Future work will include evaluations of additional cutout shapes at different depths for higher energies. Other printing materials, such as bismuth, are being tested.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app