Add like
Add dislike
Add to saved papers

SU-F-T-295: MLCs Performance and Patient-Specific IMRT QA Using Log File Analysis.

Medical Physics 2016 June
PURPOSE: To analyze the performance of the multi-leaf collimators (MLCs) from the log files recorded during the intensity modulated radiotherapy (IMRT) treatment and to construct the relative fluence maps and do the gamma analysis to compare the planned and executed MLCs movement.

METHODS: We developed a program to extract and analyze the data from dynamic log files (dynalog files) generated from sliding window IMRT delivery treatments. The program extracts the planned and executed (actual or delivered) MLCs movement, calculates and compares the relative planned and executed fluences. The fluence maps were used to perform the gamma analysis (with 3% dose difference and 3 mm distance to agreement) for 3 IMR patients. We compared our gamma analysis results with those obtained from portal dose image prediction (PDIP) algorithm performed using the EPID.

RESULTS: For 3 different IMRT patient treatments, the maximum difference between the planned and the executed MCLs positions was 1.2 mm. The gamma analysis results of the planned and delivered fluences were in good agreement with the gamma analysis from portal dosimetry. The maximum difference for number of pixels passing the gamma criteria (3%/3mm) was 0.19% with respect to portal dosimetry results.

CONCLUSION: MLC log files can be used to verify the performance of the MLCs. Patientspecific IMRT QA based on MLC movement log files gives similar results to EPID dosimetry results. This promising method for patient-specific IMRT QA is fast, does not require dose measurements in a phantom, can be done before the treatment and for every fraction, and significantly reduces the IMRT workload. The author would like to thank King Fahd University of petroleum and Minerals for the support.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app