Add like
Add dislike
Add to saved papers

WE-FG-206-05: New Arterial Spin Labeling Method for Simultaneous Estimation of Arterial Cerebral Blood Volume, Cerebral Blood Flow and Arterial Transit Time.

Medical Physics 2016 June
PURPOSE: To demonstrate the feasibility of a novel Arterial Spin Labeling (ASL) method for simultaneously measuring cerebral blood flow (CBF), arterial transit time (ATT), and arterial cerebral blood volume (aCBV) without the use of a contrast agent.

METHODS: A series of multi-TI ASL images were acquired from one healthy subject on a 3T Siemens Skyra, with the following parameters: PCASL labeling with variable TI [300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000] ms, labeling bolus 1400 ms when TI allows, otherwise 100 ms less than TI, TR was minimized for each TI, two sinc shaped pre-saturation pulses were applied in the imaging plane immediately before 2D EPI acquisition. 64×64×24 voxels, 5 mm slice thickness, 1 mm gap, full brain coverage, 6 averages per TI, no crusher gradients, 11 ms TE, scan time of 4:56. The perfusion weighted time-series was created for each voxel and fit to a novel model. The model has two components: 1) the traditional model developed by Buxton et al., accounting for CBF and ATT, and 2) a box car function characterizing the width of the labeling bolus, with variable timing and height in proportion to the aCBV. All three parameters were fit using a nonlinear fitting routine that constrained all parameters to be positive. The main purpose of the high-temporal resolution TI sampling for the first second of data acquisition was to precisely estimate the blood volume component for better detection of arrival time and magnitude of signal.

RESULTS: Whole brain maps of CBF, ATT, and aCBV were produced, and all three parameters maps are consistent with similar maps described in the literature.

CONCLUSION: Simultaneous mapping of CBF, ATT, and aCBV is feasible with a clinically tractable scan time (under 5 minutes).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app