Add like
Add dislike
Add to saved papers

SU-F-J-40: Evaluation of Sensitivity of the Automatic Matching Between Cone-Beam CT Image and Simulation CT Image in TrueBeam 2.0 Imaging System 6DoF Considering Different Uncertainty Sources.

Medical Physics 2016 June
PURPOSE: To estimate the sensitivity of TrueBeam 2.0 Imaging System 6DoF automatic matching tool through the acquisition of cone-beam CT images in different phantoms applying submillimeter translations and rotations of tenths of a degree and registered with image simulation CT.

METHODS: To evaluate overall system-wide image, we consider two uncertainties source; First, the uncertainty of the manual phantom displacement (ε_m). This uncertainty is calculated by a digital caliper (0.01 mm) for vertical (Vrt), lateral (Lat) and longitudinal (Lng). A digital inclinometer (0.01°) for the pitch and roll and the own phantom scale to evaluate the coordinate rotation (Rtn). The second uncertainty is the displacement detected by the algorithm system of matching (σ_d) that we obtain from the standard deviations of the different measurements. We use three different phantoms. The BrainLab Radiosurgery system for supporting masks with an anthropomorphic dummy adapted to allow displacements of 0.1 mm in Vrt, Lat and Lng dimensions and rotations of 0.1° in Pitch dimension. For the analysis of the Rtn and Roll dimensions we use two homemade phantoms (RinoRot and RinoRoll, La Fe Hospital, Valencia, Spain) that allow rotations of 0.3°.

RESULTS: In the case of manual displacement of 0.10 ± 0.03 mm in the translations, the system detect 0.10 ± 0.07 mm, 0.12 ± 0.07 mm and 0.13 ± 0.07 mm (mean ± SD) in Lat, Vrt and Lng respectively. In the case of rotational dimension, manual displacement of 0.3 ± 0.1° was detected with 0.19 ± 0.06°, 0.29 ± 0.03° and 0.27 ± 0.06° in Pitch, Roll and Rtn.

CONCLUSION: We conclude that the sensitivity of the automatic matching system is within 0.10 mm in translations and 0.3° in rotations. These values are under the own sensitivity of the software.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app