Add like
Add dislike
Add to saved papers

SU-G-IeP4-15: Ultrasound Imaging of Absorbable Inferior Vena Cava Filters for Proper Placement.

Medical Physics 2016 June
PURPOSE: Inferior vena cava filters (IVCFs) are used in patients with a high risk of pulmonary embolism in situations when the use of blood thinning drugs would be inappropriate. These filters are implanted under x-ray guidance; however, this provides a dose of ionizing radiation to both patient and physician. B-mode ultrasound (US) imaging allows for localization of certain implanted devices without radiation dose concerns. The goal of this study was to investigate the feasibility of imaging the placement of absorbable IVCFs using US imaging to alleviate the dosage concern inherent to fluoroscopy.

METHODS: A phantom was constructed to mimic a human IVC using tissue-mimicking material with 0.5 dB/cm/MHz acoustic attenuation, while agar inclusions were used to model acoustic mismatch at the venous interface. Absorbable IVCF's were imaged at 15 cm depth using B-mode US at 2, 3, 5, and 7 MHz transmit frequencies. Then, to determine temporal stability, the IVCF was left in the phantom for 10 weeks; during this time, the IVCF was imaged using the same techniques as above, while the integrity of the filter was analyzed by inspecting for fiber discontinuities.

RESULTS: Visualization of the inferior vena cava filter was possible at 5, 7.5, and 15 cm depth at US central frequencies of 2, 3, 5, and 7 MHz. Imaging the IVCF at 5 MHz yielded the clearest images while maintaining acceptable spatial resolution for identifying the IVCF's, while lower frequencies provided noticeably worse image quality. No obvious degradation was observed over the course of the 10 weeks in a static phantom environment.

CONCLUSION: Biodegradable IVCF localization was possible up to 15 cm in depth using conventional B-mode US in a tissue-mimicking phantom. This leads to the potential for using B-mode US to guide the placement of the IVCF upon deployment by the interventional radiologist. Mitch Eggers is an owner of Adient Medical Technologies. There are no other conflicts of interest to disclose.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app