Add like
Add dislike
Add to saved papers

SU-C-206-03: Metal Artifact Reduction in X-Ray Computed Tomography Based On Local Anatomical Similarity.

Medical Physics 2016 June
PURPOSE: Metal implants such as orthopedic hardware and dental fillings cause severe bright and dark streaking in reconstructed CT images. These artifacts decrease image contrast and degrade HU accuracy, leading to inaccuracies in target delineation and dose calculation. Additionally, such artifacts negatively impact patient set-up in image guided radiation therapy (IGRT). In this work, we propose a novel method for metal artifact reduction which utilizes the anatomical similarity between neighboring CT slices.

METHODS: Neighboring CT slices show similar anatomy. Based on this anatomical similarity, the proposed method replaces corrupted CT pixels with pixels from adjacent, artifact-free slices. A gamma map, which is the weighted summation of relative HU error and distance error, is calculated for each pixel in the artifact-corrupted CT image. The minimum value in each pixel's gamma map is used to identify a pixel from the adjacent CT slice to replace the corresponding artifact-corrupted pixel. This replacement only occurs if the minimum value in a particular pixel's gamma map is larger than a threshold. The proposed method was evaluated with clinical images.

RESULTS: Highly attenuating dental fillings and hip implants cause severe streaking artifacts on CT images. The proposed method eliminates the dark and bright streaking and improves the implant delineation and visibility. In particular, the image non-uniformity in the central region of interest was reduced from 1.88 and 1.01 to 0.28 and 0.35, respectively. Further, the mean CT HU error was reduced from 328 HU and 460 HU to 60 HU and 36 HU, respectively.

CONCLUSIONS: The proposed metal artifact reduction method replaces corrupted image pixels with pixels from neighboring slices that are free of metal artifacts. This method proved capable of suppressing streaking artifacts, improving HU accuracy and image detectability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app