Add like
Add dislike
Add to saved papers

SU-F-T-590: Modeling PTV Dose Fall-Off for Cervical Cancer SBRT Treatment Planning Using VMAT and Step-And-Shoot IMRT.

Medical Physics 2016 June
PURPOSE: Due to the high dose per fraction in SBRT, dose conformity and dose fall-off are critical. In patients with cervical cancer, rapid dose fall-off is particularly important to limit dose to the nearby rectum, small bowel, and bladder. This study compares the target volume dose fall-off for two radiation delivery techniques, fixed-field IMRT & VMAT, using non-coplanar beam geometries. Further comparisons are made between 6 and 10MV photon beam energies.

METHODS: Eleven (n=11) patients were planned in Pinnacle3 v9.10 with a NovalisTx (HD120 MLC) machine model using 6 and 10 MV photons. The following three techniques were used: (1) IMRT (10 non-coplanar beams) (2) Dual, coplanar 360° VMAT arcs (4° spacing), and (3) Triple, non-coplanar VMAT arcs (1 full arc and dual partial arcs). All plans were normalized such that 98% of the PTV received at least 28Gy/4Fx. Dose was calculated using a 2.0mm isotropic dose grid. To assess dose fall-off, twenty concentric 2mm thick rings were created around the PTV. The maximum dose in each ring was recorded and the data was fitted to model dose fall-off. A separate analysis was performed by separating target volumes into small (0-50cc), medium (51-80cc), and large (81-110cc).

RESULTS: Triple, non-coplanar VMAT arcs showed the best dose fall-off for all patients evaluated. All fitted regressions had an R(2) ≥0.99. At 10mm from the PTV edge, 10 MV VMAT3-arc had an absolute improvement in dose fall-off of 3.8% and 6.9% over IMRT and VMAT2-arc, respectively. At 30mm, 10 MV VMAT3-arc had an absolute improvement of 12.0% and 7.0% over IMRT and VMAT2-arc, respectively. Faster dose fall-off was observed for small volumes as opposed to medium and large ones-9.6% at 20mm.

CONCLUSION: Triple, non-coplanar VMAT arcs offer the sharpest dose fall-off for cervical SBRT plans. This improvement is most pronounced when treating smaller target volumes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app