Add like
Add dislike
Add to saved papers

SU-G-TeP2-10: Feasibility of Newly Designed Applicator for High Dose Rate Brachytherapy Treatment of Patients with Vaginal Vault Recurrence.

Medical Physics 2016 June
PURPOSE: To compare the dose of an in-house 3D-printed gynecology applicator (TMHGA) for vaginal vault recurrence of corpus cancer patients after operation for high dose rate brachytherapy treatment with commercially available applicators.

METHODS: A newly designed applicator is made from 3D-printing methods using ABSM30i. The isodose of the applicator is compared with Elekta multi-channel (MC) applicator and titanium Rotterdam applicator with coupling central tube and vaginal cylinder (RC). Three plans are created using three applicators in a CT set of water phantom. The applicators are anchored using the applicator library and implant library in the Elekta Oncentra treatment planning system (ver.4.5). The rectum is mimicked by creating a 2cm diameter cylinder, with a distance 1mm posteriorly away from the high risk CTV (HR-CTV). Similarly, the bladder is replicated by a 6cm diameter cylinder with distance 1mm anteriorly from the HR-CTV. Three plans are all normalized 1.5cm superior, 0.5cm anterior and 0.5cm posterior of the applicator surface. By fixing D90 of HR-CTV to 6Gy, the D2cc of rectum and bladder of three plans are compared.

RESULTS: The D2cc of the bladder for using TMHGA is lower than MC and RC by 14.0% and 11.9% respectively. While the D2cc of the rectum for using TMHGA is lower than MC and RC by 18.9% and 12.4% respectively. The total treatment time of TMHGA plan is shorter than MC and RC by 11.2% and 12.9%.

CONCLUSION: The applicator created via 3D printing delivers a lower dose to the bladder and the rectum while keeping the same coverage to HR-CTV as other commercially available applicators. Additionally, the new applicator resulted in a reduction of treatment time, which is always welcome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app