Add like
Add dislike
Add to saved papers

Cobalt complexes as internal standards for capillary zone electrophoresis-mass spectrometry studies in biological inorganic chemistry.

Run-by-run variations are very common in capillary electrophoretic (CE) separations and cause imprecision in both the migration times and the peak areas. This makes peak and kinetic trend identification difficult and error prone. With the aim to identify suitable standards for CE separations which are compatible with the common detectors UV, ESI-MS, and ICP-MS, the Co(III) complexes [Co(en)3]Cl3, [Co(acac)3] and K[Co(EDTA)] were evaluated as internal standards in the reaction of the anticancer drug cisplatin and guanosine 5'-monophosphate as an example of a classical biological inorganic chemistry experiment. These Co(III) chelate complexes were considered for their stability, accessibility, and the low detection limit for Co in ICP-MS. Furthermore, the Co(III) complexes are positively and negatively charged as well as neutral, allowing the detection in different areas of the electropherograms. The background electrolytes were chosen to cover a wide pH range. The compatibility to the separation conditions was dependent on the ligands attached to the Co(III) centers, with only the acetylacetonato (acac) complex being applicable in the pH range 2.8-9.0. Furthermore, because of being charge neutral, this compound could be used as an electroosmotic flow (EOF) marker. In general, employing Co complexes resulted in improved data sets, particularly with regard to the migration times and peak areas, which resulted, for example, in higher linear ranges for the quantification of cisplatin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app