COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Intrahepatic upregulation of MRTF-A signaling contributes to increased hepatic vascular resistance in cirrhotic rats with portal hypertension.

BACKGROUND: Portal hypertension in cirrhosis is mediated, in part, by increased intrahepatic resistance, reflecting massive structural changes associated with fibrosis and intrahepatic vasoconstriction. Activation of the Rho/MRTF/SRF signaling pathway is essential for the cellular regulatory network of fibrogenesis. The aim of this study was to investigate MRTF-A-mediated regulation of intrahepatic fibrogenesis in cirrhotic rats.

METHODS: Portal hypertension was induced in rats via an injection of CCl4 oil. Hemodynamic measurements were obtained using a polyethylene PE-50 catheter and pressure transducers. Expression of hepatic fibrogenesis was measured using histological staining. Expression of protein was measured using western blotting.

RESULTS: Upregulation of MRTF-A protein expression in the livers of rats with CCl4 -induced cirrhosis was relevant to intrahepatic resistance and hepatic fibrogenesis in portal hypertensive rats with increased modeling time. Inhibition of MRTF-A by CCG-1423 decelerated hepatic fibrosis, decreased intrahepatic resistance and portal pressure, and alleviated portal hypertension.

CONCLUSION: Increased intrahepatic resistance in rats with CCl4 -induced portal hypertension is associated with an upregulation of MRTF-A signaling. Inhibition of this pathway in the liver can decrease hepatic fibrosis and intrahepatic resistance, as well as reduce portal pressure in cirrhotic rats with CCl4 -induced portal hypertension.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app