Add like
Add dislike
Add to saved papers

Pressure-volume loop-derived cardiac indices during dobutamine stress: a step towards understanding limitations in cardiac output in children with hypoplastic left heart syndrome.

BACKGROUND: Children with a single systemic right ventricle, such as in hypoplastic left heart syndrome (HLHS), frequently experience reduced exercise capacity. Elucidating the causes could help with optimising treatment strategies.

METHODS: Prospective data from 10 consecutive symptomatic patients with HLHS undergoing clinical cardiac magnetic resonance with catheterisation (XMR) were analysed. Mean age 8.6years (range 3.5-11.6years), mean time since Fontan completion 5.5years. MR-compatible catheters were placed in the systemic right ventricle and branch pulmonary arteries to record pressures at rest, with dobutamine infusion at 10mcg/kg/min and at 20mcg/kg/min. Cine short-axis stacks of the ventricle were performed at each condition and used to construct pressure-volume loops.

RESULTS: Compared to rest, cardiac index increased with low-dose dobutamine (p<0.01) with no further rise at peak stress despite a further, albeit, blunted rise in heart rate (p=0.002). A fall in stroke volume occurred (p=0.014) despite good contractility (74% increase, p=0.045) and a well-coupled ventriculo-arterial ratio. End-diastolic pressure and early active relaxation, markers of diastolic function, were normal at rest. However, preload fell at peak stress (p<0.008) while pulmonary vascular resistance (PVR) was low throughout. This group of HLHS patients demonstrated a fall in SV at peak stress, coinciding with a fall in preload.

CONCLUSIONS: Markers of systolic and diastolic function remained normal. Failure to adequately fill the ventricle implies a ceiling of maximal flow through the Fontan circuit despite low PVR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app