Add like
Add dislike
Add to saved papers

The Chk1 inhibitor MK-8776 increases the radiosensitivity of human triple-negative breast cancer by inhibiting autophagy.

MK-8776 is a recently described inhibitor that is highly selective for checkpoint kinase 1 (Chk1), which can weaken the DNA repair capacity in cancer cells to achieve chemo-sensitization. A number of studies show that MK-8776 enhances the cytotoxicity of hydroxyurea and gemcitabine without increasing normal tissue toxicities. Thus far, there is no evidence that MK-8776 can be used as a radiotherapy sensitization agent. In this study, we investigated the effects of MK-8776 on the radiosensitivity of 3 human triple-negative breast cancer (TNBC) cell lines MDA-MB-231, BT-549 and CAL-51. MK-8776 dose-dependently inhibited the proliferation of MDA-MB-231, BT-549 and CAL-51 cells with IC50 values of 9.4, 17.6 and 2.1 μmol/L, respectively. Compared with irradiation-alone treatment, pretreatment with a low dose of MK-8776 (100-400 nmol/L) significantly increased irradiation-induced γH2A.X foci in the 3 TNBC cell lines, suggesting enhanced DNA damage by MK-8776, inhibited the cell proliferation and increased the radiosensitivity of the 3 TNBC cell lines. Similar results were obtained in MDA-MB-231 xenograft tumors in nude mice that received MK-8776 (15 or 40 mg/kg, ip) 26 d after irradiation. To explore the mechanisms underlying the radio-sensitization by MK-8776, we used TEM and found that irradiation significantly increased the numbers of autophagosomes in the 3 TNBC cell lines. Moreover, irradiation markedly elevated the levels of Atg5, and promoted the transformation of LC3-I to LC3-II in the cells. Pretreatment with the low dose of MK-8776 suppressed these effects. The above results suggest that MK-8776 increases human TNBC radiosensitivity by inhibiting irradiation-induced autophagy and that MK-8776 may be a potential agent in the radiosensitization of human TNBC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app