Add like
Add dislike
Add to saved papers

Melissa officinalis Acidic Fraction Protects Cultured Cerebellar Granule Neurons Against Beta Amyloid-Induced Apoptosis and Oxidative Stress.

OBJECTIVE: Extracellular deposition of the beta-amyloid (Aβ) peptide, which is the main finding in the pathophysiology of Alzheimer's disease (AD), leads to oxidative damage and apoptosis in neurons. Melissa officinalis (M. officinalis) is a medicinal plant from the Lamiaceae family that has neuroprotective activity. In the present study we have investigated the protective effect of the acidic fraction of M. officinalis on Aβ-induced oxidative stress and apoptosis in cultured cerebellar granule neurons (CGN). Additionally, we investigated a possible role of the nicotinic receptor.

MATERIALS AND METHODS: This study was an in vitro experimental study performed on mice cultured CGNs. CGNs were pre-incubated with different concentrations of the acidic fraction of M. officinalis for 24 hours, followed by incubation with Aβ for an additional 48 hours. CGNs were also pre-incubated with the acidic fraction of M. officinalis and mecamylamin, followed by incubation with Aβ. We used the 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay to measure cell viability. Acetylcholinesterase (AChE) activity, reactive oxygen species (ROS) production, lipidperoxidation, and caspase-3 activity were measured after incubation. Hochst/annexin Vfluorescein isothiocyanate (FITC)/propidium iodide (PI) staining was performed to detect apoptotic cells.

RESULTS: The acidic fraction could protect CGNs from Aβ-induced cytotoxicity. Mecamylamine did not abolish the protective effect of the acidic fraction. AChE activity, ROS production, lipid peroxidation, and caspase-3 activity increased after Aβ incubation. Preincubation with the acidic fraction of M. officinalis ameliorated these factors and decreased the number of apoptotic cells.

CONCLUSION: Our results indicated that the protective effect of the acidic fraction of M. officinalis was not mediated through nicotinic receptors. This fraction could protect CGNs through antioxidant and anti-apoptotic activities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app