Add like
Add dislike
Add to saved papers

Parkin deficiency accelerates consequences of mitochondrial DNA deletions and Parkinsonism.

Parkinson's disease (PD) is a neurodegenerative condition caused by age-related death of dopaminergic (DA) neurons in the substantia nigra (SN). Mitochondrial DNA (mtDNA) deletions rise exponentially with age in humans and reach their highest levels approaching 60% in dopaminergic neurons of the substantia nigra and overlap with dying neurons. Parkin deletion causes Parkinsonism in humans, presumably through a decrease in mitochondrial quality control, but Parkin knockout mice do not have DA neurodegeneration. We crossed Parkin knockouts to the Twinkle-TG mouse in which mtDNA deletions are increased specifically in substantia nigra to determine the effect of increased deletion mutagenesis in the absence of mitochondrial quality control. These double-mutant 'TwinkPark' mice had 1, the highest mtDNA deletion concentration in SN; 2, the lowest mitochondrial function and membrane potential; 3, the most severe neurobehavioral deficits at 19months; 4, the least dopaminergic neurons in the SN and lowest dopamine levels, i.e. Parkinsonism. This mouse model could provide novel insights into the pathomechanism by which a specific increase in mtDNA deletions with age contribute to dopaminergic neurodegeneration and Parkinson's disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app