JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Analysis of gene expression in Ca 2+ -dependent activator protein for secretion 2 (Cadps2) knockout cerebellum using GeneChip and KEGG pathways.

Neuroscience Letters 2017 Februrary 4
In the mouse cerebellum, Ca2+ -dependent activator protein for secretion 2 (CADPS2, CAPS2) is involved in regulated secretion from dense-core vesicles (DCVs), which contain neuropeptides including brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3). Capds2 knockout (KO) mice show impaired cerebellar development in addition to autistic-like behavioral phenotypes. To understand the molecular impact caused by loss of Capds2, we analyzed gene expression profiles in the Capds2 KO cerebellum using a GeneChip microarray and the KEGG Pathway database. Significant differential expression was observed in 1211 of 22,690 (5.34%) genes represented on the chip. The expression levels of exocytosis-related genes (Stx5a, Syt6), genes encoding secretory (Fgf2, Fgf4, Edn2) and synaptic proteins (Grin2b, Gabbr1), neurotrophin signaling-associated genes (Sos1, Shc1, Traf6, Psen2), and a gene for Rett syndrome (Mecp2) were significantly changed. Taken together, these results suggest that deregulated gene expression caused by loss of Capds2 may cause developmental deficits and/or pathological symptoms, resulting in autistic-like phenotypes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app