Journal Article
Observational Study
Add like
Add dislike
Add to saved papers

Glial fibrillary acidic protein plasma levels are correlated with degree of hypothermia during cardiopulmonary bypass in congenital heart disease surgery.

Objectives: Improved congenital heart defect (CHD) operations have reduced operative mortality to 3%. The major concern is now long-term neurological outcomes. We measured plasma glial fibrillary acidic protein (GFAP), an early marker of brain injury, during different phases of cardiopulmonary bypass (CPB), to correlate the increase of GFAP to clinical parameters or specific operative phases.

Methods: We performed a prospective, single-centre, observational study in children undergoing cardiac operations. We studied 69 children with CHD and biventricular heart physiology: 26 had tetralogy of Fallot; 17 transposition of the great arteries; and 26 ventricular/atrial septal defects with or without associated arch defects. GFAP levels were measured by ELISA at different stages of CPB. We recorded clinical and surgical parameters and applied multivariable and logistic regressions to assess which parameters were independent predictors of variations in plasma GFAP.

Results: GFAP increased during CPB and peaked at the end of rewarming. Multivariable regression showed degree of hypothermia as the only significant independent predictor of GFAP increase, adjusted for age, prematurity, type of CHD, cyanosis, aortic cross-clamp time, haemodilution, neurological risk time interval and rewarming rate. Temperature nadir and neurological risk time interval were significant independent predictors of a GFAP value  > 0.46 ng/ml.

Conclusions: Hypothermia degree during CPB is correlated with GFAP plasma increase in children with biventricular heart defects undergoing surgical repair. Rewarming is the most critical CPB phase for GFAP increase. The implication of high plasma GFAP is still under evaluation. Follow-up studies are ongoing to assess the reliability of GFAP as a marker of brain injury and/or as a predictor of neurodevelopmental abnormalities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app