Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A conserved retromer sorting motif is essential for mitochondrial DLP1 recycling by VPS35 in Parkinson's disease model.

Human Molecular Genetics 2017 Februrary 16
Impaired mitochondria dynamics and quality control are involved in mitochondrial dysfunction and pathogenesis of Parkinson's disease (PD). VPS35 mutations cause autosomal dominant PD and we recently demonstrated that fPD-associated VPS35 mutants can cause mitochondrial fragmentation through enhanced VPS35-DLP1 interaction. In this study, we focused on the specific sites on DLP1 responsible for the VPS35-DLP1 interaction. A highly conserved FLV motif was identified in the C-terminus of DLP1, mutation of which significantly reduced VPS35-DLP1 interaction. A decoy peptide design based on this FLV motif could block the VPS35-DLP1 interaction and inhibit the recycling of mitochondrial DLP1 complexes. Importantly, VPS35 D620N mutant-induced mitochondrial fragmentation and respiratory deficits could be rescued by the treatment of this decoy peptide in both M17 cells overexpressing D620N or PD fibroblasts bearing this mutation. Overall, our results lend further support to the notion that VPS35-DLP1 interaction is key to the retromer-dependent recycling of mitochondrial DLP1 complex during mitochondrial fission and provide a novel therapeutic target to control excessive fission and associated mitochondrial deficits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app