Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Quasilinear reflection as a possible mechanism for suppressor-induced otoacoustic emission.

A frequency-domain iterative approach is developed to compute the change in characteristic impedance in the cochlea due to the presence of a suppressor tone. Based on this approach, a small transient wave passing by the best place (BP) of the suppressor is predicted to be partially reflected because of the suppressor-induced impedance variation. This computational approach is tested on a nonlinear model of cochlear mechanics [Liu, J. Acoust. Soc. Am. 136, 1788-1796 (2014)]. When a 9-kHz suppressor at 60 dB sound pressure level is delivered to the model, the characteristic impedance decreases by ∼20% near its BP. This localized impedance mismatch causes a forward-going wave at 4 kHz to reflect partially, and the magnitude of the reflected component is about -18 dB relative to the forward-going component near the stapes. The reflected components eventually emit from the cochlea to the ear canal, and the predicted amplitude of tone-burst evoked otoacoustic emissions (OAEs) agrees well with time-domain simulation. The present results suggest that, while the "suppressor" is meant to suppress the OAEs in experiments, its very presence might create an otherwise non-existing emission component via nonlinear scattering when its frequency is higher than that of the probe.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app