JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

High-resolution data assimilation of cardiac mechanics applied to a dyssynchronous ventricle.

Computational models of cardiac mechanics, personalized to a patient, offer access to mechanical information above and beyond direct medical imaging. Additionally, such models can be used to optimize and plan therapies in-silico, thereby reducing risks and improving patient outcome. Model personalization has traditionally been achieved by data assimilation, which is the tuning or optimization of model parameters to match patient observations. Current data assimilation procedures for cardiac mechanics are limited in their ability to efficiently handle high-dimensional parameters. This restricts parameter spatial resolution, and thereby the ability of a personalized model to account for heterogeneities that are often present in a diseased or injured heart. In this paper, we address this limitation by proposing an adjoint gradient-based data assimilation method that can efficiently handle high-dimensional parameters. We test this procedure on a synthetic data set and provide a clinical example with a dyssynchronous left ventricle with highly irregular motion. Our results show that the method efficiently handles a high-dimensional optimization parameter and produces an excellent agreement for personalized models to both synthetic and clinical data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app