Journal Article
Validation Studies
Add like
Add dislike
Add to saved papers

Quantification of highly selective sigma-1 receptor antagonist CM304 using liquid chromatography tandem mass spectrometry and its application to a pre-clinical pharmacokinetic study.

An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for quantification of CM304, a novel and highly selective sigma-1 receptor antagonist that has recently entered into human clinical trials. A structural analogue of CM304, SN56, was used as the internal standard (IS). Chromatographic separation was achieved on an Acquity UPLC™ BEH C18 (1.7 μm, 2.1 mm × 50 mm) column using a mobile phase [water:methanol (0.1%v/v formic acid; 50:50, %v/v)] at a flow rate of 0.2 mL/min. Mass spectrometric detection was performed in the positive ionization mode with multiple reaction monitoring (MRM) using m/z transitions of 337 > 238 for CM304 and 319 > 220 for the IS. The method was found to be linear and reproducible with a regression coefficient consistently >0.99 for the calibration range of 3 to 3000 ng/mL. The extraction recovery ranged from 91.5 to 98.4% from spiked (7.5, 300 and 2526 ng/mL) plasma quality control samples. The precision (%RSD; 1.1 to 2.9%) and accuracy (%RE; -1.9 to 1.8%) were within acceptable limit. The validated method was successfully applied to a single dose oral and intravenous (I.V.) pharmacokinetic study of CM304 in rats. Following I.V. administration, the compound exhibited adequate exposure along with high extravascular distribution and insignificant amount of extra hepatic metabolism. Copyright © 2016 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app