Add like
Add dislike
Add to saved papers

Lupinifolin from Derris reticulata possesses bactericidal activity on Staphylococcus aureus by disrupting bacterial cell membrane.

In this study, lupinifolin, a prenylated flavonoid, was isolated from Derris reticulata stem, identified by NMR spectra and confirmed with mass spectrometry. Lupinifolin was freshly prepared by solubilizing in 0.1 N NaOH and immediately diluted in Müller-Hinton broth for antibacterial testing. The data showed that Gram-positive bacteria were more susceptible to lupinifolin than Gram-negative bacteria. Of four strains of Gram-positive bacteria tested, Staphylococcus aureus was the most susceptible. Using the two-fold microdilution method, it was found that lupinifolin possessed antimicrobial activity against S. aureus with minimum inhibitory concentration and minimum bactericidal concentration of 8 and 16 µg/ml, respectively, which is less potent than ampicillin. However, from the time-effect relationship, it was shown that lupinifolin had faster onset than ampicillin. The faster onset of lupinifolin was confirmed by scanning electron microscopy. To investigate the mechanism of action of lupinifolin, transmission electron microscopy (TEM) was performed to observe the ultrastructure of S. aureus. The TEM images showed that lupinifolin ruptured the bacterial cell membrane and cell wall. Due to its fast onset, it is suggested that the action of lupinifolin is likely to be the direct disruption of the cell membrane. This hypothesis was substantiated by the data from flow cytometry using DiOC2 as an indicator. The result showed that the red/green ratio which indicated bacterial membrane integrity was significantly decreased, similar to the known protonophore carbonyl cyanide 3-chlorophenylhydrazone. It is concluded that lupinifolin inhibits the growth of S. aureus by damaging the bacterial cytoplasmic membrane.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app