Add like
Add dislike
Add to saved papers

Use of droplet digital PCR for quantitative and automatic analysis of the HER2 status in breast cancer patients.

PURPOSE: Digital polymerase chain reaction (dPCR) has been used to yield an absolute measure of nucleic acid concentrations. Recently, a new method referred to as droplet digital PCR (ddPCR) has gained attention as a more precise and less subjective assay to quantify DNA amplification. We demonstrated the usefulness of ddPCR to determine HER2 gene amplification of breast cancer.

METHODS: In this study, we used ddPCR to measure the HER2 gene copy number in clinical formalin-fixed paraffin-embedded samples of 41 primary breast cancer patients. To improve the accuracy of ddPCR analysis, we also estimated the tumor content ratio (TCR) for each sample.

RESULTS: Our determination method for HER2 gene amplification using the ddPCR ratio (ERBB2:ch17cent copy number ratio) combined with the TCR showed high consistency with the conventionally defined HER2 gene status according to ASCO-CAP (American Society of Clinical Oncology/College of American Pathologists) guidelines (P<0.0001, Fisher's exact test). The equivocal area was established by adopting 99% confidence intervals obtained by cell line assays, which made it possible to identify all conventionally HER2-positive cases with our method. In addition, we succeeded in automating a major part of the process from DNA extraction to determination of HER2 gene status.

CONCLUSIONS: The introduction of ddPCR to determine the HER2 gene status in breast cancer is feasible for use in clinical practice and might complement or even replace conventional methods of examination in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app