JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cryptosporidium parvum infection attenuates the ex vivo propagation of murine intestinal enteroids.

Physiological Reports 2016 December
Cryptosporidium, a ubiquitous coccidian protozoan parasite that infects the gastrointestinal epithelium and other mucosal surfaces, is an important opportunistic pathogen for immunocompromised individuals and a common cause of diarrhea in young children in the developing countries. One of the pathological hallmarks of intestinal cryptosporidiosis is villous atrophy, which results in a shorter height of intestinal villi. Here, we investigated the effects of Cryptosporidium infection on intestinal epithelial growth, using an ex vivo model of intestinal cryptosporidiosis employing enteroids from mice. We detected infection of enteroids isolated from immunocompetent adult and neonatal mice after ex vivo exposure to Cryptosporidium sporozoites. We observed a significant inhibition of enteroid propagation following infection. Intriguingly, we identified a decreased expression level of intestinal stem cell markers in enteroids following C. parvum infection. We further measured the expression levels of several Wnt antagonists or agonists in infected enteroids, as induction of the Wnt/β-catenin activation is a key factor for intestinal stem cell function. We detected a markedly increased level of the Dickkopf-related protein 1 and decreased level of the Wnt family member 5a in enteroids after infection. The low density lipoprotein receptor-related protein 5, one of the Wnt co-receptors, is downregulated in the infected enteroids. In addition, increased apoptotic cell death and cell senescence were observed in the infected enteroids. Our results demonstrate a significant inhibitory effect of Cryptosporidium infection on the ex vivo propagation of enteroids from mice, providing additional insights into the impact of Cryptosporidium infection on intestinal epithelial growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app