Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Micafungin alters the amino acid, nucleic acid and central carbon metabolism of Candida albicans at subinhibitory concentrations: novel insights into mechanisms of action.

Background: Echinocandins are an important class of antifungal agents in the treatment of invasive candidiasis. However, little is known about the metabolomic effects of echinocandins on Candida . We therefore performed LC-high-resolution MS (LC-HRMS)-based metabolomics profiling of the response of Candida albicans cells to increasing concentrations of micafungin to determine the metabolic response of Candida to micafungin subinhibitory injury.

Methods: Isolates of C. albicans were cultured on nitrocellulose filters to mid-logarithmic phase of growth and micafungin (0-0.25 mg/L) was added. At mid-logarithmic phase, replicates were metabolically quenched. Intracellular metabolites were analysed by LC-HRMS. Changes in pool sizes of individual metabolites were analysed by Student's t -test adjusted for multiple hypothesis testing by Benjamini-Hochberg correction. Metabolites were ascribed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways database.

Results: Among 3446 detected metabolites, 204 were identified by comparison against pure standard or comparison against a library of mass-retention-time pairs. Fifty had significantly altered abundances in response to increasing micafungin concentrations. Pool sizes of amino acids, nucleic acids and polyamine metabolism were significantly increased at subinhibitory concentrations, while exposure to inhibitory concentrations resulted in a precipitous decrease consistent with fungicidal activity.

Conclusions: Micafungin induces a re-routing of metabolic pathways inhibiting protein synthesis and cell replication. These results shed light on new mechanisms of action of echinocandins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app