JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Quantitative model of hematologic and plasma volume responses after ascent and acclimation to moderate to high altitudes.

Despite decades of research, the magnitude and time course of hematologic and plasma volume (PV) changes following rapid ascent and acclimation to various altitudes are not precisely described. To develop a quantitative model, we utilized a comprehensive database and general linear mixed models to analyze 1,055 hemoglobin ([Hb]) and hematocrit (Hct) measurements collected at sea level and repeated time points at various altitudes in 393 unacclimatized men ( n = 270) and women ( n = 123) who spent between 2 h and 7 days at 2,500-4,500 m under well-controlled and standardized experimental conditions. The PV change (ΔPV) was calculated from [Hb] and Hct measurements during a time period when erythrocyte volume is stable. The results are 1 ) ΔPV decreases rapidly (~6%) after the 1st day at 2,500 m and [Hb] and Hct values increase by 0.5 g/dl and 1.5 points, respectively; 2 ) ΔPV decreases an additional 1%, and [Hb] and Hct increase an additional 0.1 g/dl and 0.2 points every 500-m increase in elevation above 2,500 m after the 1st day; 3 ) ΔPV continues to decrease over time at altitude, but the magnitude of this decrease and subsequent increase in [Hb] and Hct levels is dependent on elevation and sex; and 4 ) individuals with high initial levels of [Hb] and Hct and older individuals hemoconcentrate less at higher elevations. This study provides the first quantitative delineation of ΔPV and hematological responses during the first week of exposure over a wide range of altitudes and demonstrates that absolute altitude and time at altitude, as well as initial hematologic status, sex, and age impact the response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app