Add like
Add dislike
Add to saved papers

Numerical simulation of mitral valve prolapse considering the effect of left ventricle.

Heart failure is one of the most important issues that has been investigated in recent research studies. Variations that occur in apparatus of mitral valve, such as chordae tendineaea rupture, can affect the valve function during ventricular contraction and lead to regurgitation from the left ventricle into the left atrium. One method for understanding mitral valve function in such conditions is computational analysis. In this paper, we develop a finite element model of mitral valve prolapse, considering the direct effect of left ventricular motion on blood flow interacting with the mitral valve. Ventricular wall motion is used as a constraint for fluid domain. Arbitrary Lagrangian-Eulerian finite element method formulation is used for numerical solution of transient dynamic equations of the fluid domain. Leaflets' stresses and chordal forces during prolapse are determined and compared to previous healthy results, as well as flow characteristics in the computational domain. Results show considerable increases in the stress magnitudes of interior and posterior leaflets in prolapse condition in comparison with previous healthy studies. In addition, chordae tendineae forces are distributed non-uniformly with higher maximum value here, as a result of other chordae tendineae rupture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app