Add like
Add dislike
Add to saved papers

Inhibition of ALDH2 by O-GlcNAcylation contributes to the hyperglycemic exacerbation of myocardial ischemia/reperfusion injury.

Oncotarget 2017 March 22
Although hyperglycemia is causally related to adverse outcomes after myocardial ischemia/reperfusion (I/R), the underlying mechanisms are largely unknown. Here, we investigated whether excessive O-linked-N-acetylglucosamine (O-GlcNAc) modification of acetaldehyde dehydrogenase 2 (ALDH2), an important cardioprotective enzyme, was a mechanism for the hyperglycemic exacerbation of myocardial I/R injury. Both acute hyperglycemia (AHG) and diabetes (DM)-induced chronic hyperglycemia increased cardiac dysfunction, infarct size and apoptosis index compared with normal saline (NS)+I/R rats (P<0.05). ALDH2 O-GlcNAc modification was increased whereas its activity was decreased in AHG+I/R and DM+I/R rats. High glucose (HG, 30mmol/L) markedly increased ALDH2 O-GlcNAc modification compared with Con group (5mmol/L) (P<0.05). ALDH2 O-GlcNAc modification was increased by 62.9% in Con+PUGNAc group whereas it was decreased by 44.1% in Con+DON group compared with Con group (P<0.05). Accordingly, ALDH2 activity was decreased by 18.1% in Con+PUGNAc group whereas it was increased by 17.9% in Con+DON group. Moreover, DON decreased levels of 4-hydroxy-2-nonenal (4-HNE), aldehydes, protein carbonyl accumulation and apoptosis index compared with HG+H/R group (P<0.05). Alda-1, a specific activator of ALDH2, significantly decreased ALDH2 O-GlcNAc modification and improved infarct size, apoptosis index and cardiac dysfunction induced by I/R combined with hyperglycemia. These findings demonstrate that ALDH2 O-GlcNAc modification is a key mechanism for the hyperglycemic exacerbation of myocardial I/R injury and Alda-1 has therapeutic potential for inducing cardioprotection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app