JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Connecting the Dots: Linking Environmental Justice Indicators to Daily Dose Model Estimates.

Many different quantitative techniques have been developed to either assess Environmental Justice (EJ) issues or estimate exposure and dose for risk assessment. However, very few approaches have been applied to link EJ factors to exposure dose estimate and identify potential impacts of EJ factors on dose-related variables. The purpose of this study is to identify quantitative approaches that incorporate conventional risk assessment (RA) dose modeling and cumulative risk assessment (CRA) considerations of disproportionate environmental exposure. We apply the Average Daily Dose (ADD) model, which has been commonly used in RA, to better understand impacts of EJ indicators upon exposure dose estimates and dose-related variables, termed the Environmental-Justice-Average-Daily-Dose (EJ-ADD) approach. On the U.S. nationwide census tract-level, we defined and quantified two EJ indicators (poverty and race/ethnicity) using an EJ scoring method to examine their relation to census tract-level multi-chemical exposure dose estimates. Pollutant doses for each tract were calculated using the ADD model, and EJ scores were assigned to each tract based on poverty- or race-related population percentages. Single- and multiple-chemical ADD values were matched to the tract-level EJ scores to analyze disproportionate dose relationships and contributing EJ factors. We found that when both EJ indicators were examined simultaneously, ADD for all pollutants generally increased with larger EJ scores. To demonstrate the utility of using EJ-ADD on the local scale, we approximated ADD levels of lead via soil/dust ingestion for simulated communities with different EJ-related scenarios. The local-level simulation indicates a substantial difference in exposure-dose levels between wealthy and EJ communities. The application of the EJ-ADD approach can link EJ factors to exposure dose estimate and identify potential EJ impacts on dose-related variables.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app