Add like
Add dislike
Add to saved papers

Cyclophosphamide promotes breast cancer cell migration through CXCR4 and matrix metalloproteinases.

Cyclophosphamide is indicated for the treatment of cancerous diseases such as breast cancer and cervical cancer. Recent studies have shown that cyclophosphamide may induce cancer metastasis, but the cause of this unexpected adverse effect is not fully understood. In this study, we investigate the effect of cyclophosphamide on cancer cell migration and its correlation to chemokine (C-X-C motif) receptor 4 (CXCR4), a biomarker for cancer metastasis. Two human cancer cell lines with significant difference in endogenous CXCR4 expression, the breast cancer cell line, MDA-MB-231, and the melanoma cell line, MDA-MB-435S, were treated with various concentrations of cyclophosphamide, followed by the assessment of CXCR4 expression and cell migration. We found that the migration ability of MDA-MB-231 cells was enhanced with increasing concentrations of cyclophosphamide, which induced the cell-surface expression of CXCR4, but had no effect on the overall amount of CXCR4. In MDA-MB-435S cells, in which CXCR4 was barely detectable, cyclophosphamide was unable to activate cell-surface CXCR4, and did not promote cell migration. Studies on the mRNA expression profile of matrix metalloproteinases (MMPs) in MDA-MB-231 cells further indicate that MMP9 and MMP13 may be involved in the action of cyclophosphamide. The protein expression of both MMP9 and MMP13 was increased in the presence of cyclophosphamide. Results from this study provide the molecular basis for the possible pathway of cyclophosphamide to induce cancer metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app